Spatiotemporal changes in the genetic diversity of harmful algal blooms caused by the toxic dinoflagellate Alexandrium minutum.
نویسندگان
چکیده
Organisms with sexual and asexual reproductive systems benefit from both types of reproduction. Sexual recombination generates new combinations of alleles, whereas clonality favours the spread of the fittest genotype through the entire population. Therefore, the rate of sexual vs. clonal reproduction has a major influence on the demography and genetic structure of natural populations. We addressed the effect of reproductive system on populations of the dinoflagellate Alexandrium minutum. More specifically, we monitored the spatiotemporal genetic diversity during and between bloom events in two estuaries separated by 150 km for two consecutive years. An analysis of population genetic patterns using microsatellite markers revealed surprisingly high genotypic and genetic diversity. Moreover, there was significant spatial and temporal genetic differentiation during and between bloom events. Our results demonstrate that (i) interannual genetic differentiation can be very high, (ii) estuaries are partially isolated during bloom events and (iii) genetic diversity can change rapidly during a bloom event. This rapid genetic change may reflect selective effects that are nevertheless not strong enough to reduce allelic diversity. Thus, sexual reproduction and/or migration may regularly erase any genetic structure produced within estuaries during a bloom event.
منابع مشابه
Short-Term Behavioural Responses of the Great Scallop Pecten maximus Exposed to the Toxic Alga Alexandrium minutum Measured by Accelerometry and Passive Acoustics
Harmful algal blooms produced by toxic dinoflagellates have increased worldwide, impacting human health, the environment, and fisheries. Due to their potential sensitivity (e.g., environmental changes), bivalves through their valve movements can be monitored to detect harmful algal blooms. Methods that measure valve activity require bivalve-attached sensors and usually connected cables to data ...
متن کاملPopulation genetic structure and connectivity of the harmful dinoflagellate Alexandrium minutum in the Mediterranean Sea.
The toxin-producing microbial species Alexandrium minutum has a wide distribution in the Mediterranean Sea and causes high biomass blooms with consequences on the environment, human health and coastal-related economic activities. Comprehension of algal genetic differences and associated connectivity is fundamental to understand the geographical scale of adaptation and dispersal pathways of harm...
متن کاملEffects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification
The roles of adaptation, chance, and history on evolution of the toxic dinoflagellate Alexandrium minutum Halim, under selective conditions simulating global change, have been addressed. Two toxic strains (AL1V and AL2V), previously acclimated for two years at pH 8.0 and 20°C, were transferred to selective conditions: pH 7.5 to simulate acidification and 25°C. Cultures under selective condition...
متن کاملEvidence for parasite-mediated selection during short-lasting toxic algal blooms
Parasites play a role in the control of transient algal blooms, but it is not known whether parasite-mediated selection results in coevolution of the host and the parasites over this short time span. We investigated the presence of coevolution between the toxic dinoflagellate Alexandrium minutum and two naturally occurring endoparasites during blooms lasting a month in two river estuaries, usin...
متن کاملCopepods induce paralytic shellfish toxin production in marine dinoflagellates.
Among the thousands of unicellular phytoplankton species described in the sea, some frequently occurring and bloom-forming marine dinoflagellates are known to produce the potent neurotoxins causing paralytic shellfish poisoning. The natural function of these toxins is not clear, although they have been hypothesized to act as a chemical defence towards grazers. Here, we show that waterborne cues...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2014